Experimental Study of Induced Vibration and Work Surface Roughness in the Turning of 41Cr4 Alloy Steel using Response Surface Methodology

نویسندگان

  • S. C. Eze
  • C. O. Izelu
چکیده

This study investigates experimentally the relationship between induced vibration and surface roughness in turning of 41Cr4 Alloy steel using Response Surface Methodology RSM. The levels of process cutting parameters in the study are limited to the following data; Depth of cut (1.0, 2.0, 3.0 mm), cutting speed (260, 320, 400 rpm), feed rate (0.15, 0.20, 0.30 mm/rev), tool nose radius (0, 1, 2 mm), tool overhang (50, 55, 60 mm) and work piece overhang (80, 100, 120 mm). The data are generated by lathe turning of 41Cr4 Alloy steel samples at different levels of low, medium and high. From the study it shows that Induced vibration has a significant effect on surface roughness of work piece. The surface roughness of work piece is proportional to cutting tool acceleration. This effect interacts with other independent variables such as depth of cut, cutting speed and cutting tool overhang etc. Experimental results have shown that induced vibration has significant impact on surface roughness which can be used to control the finished surface of a work pieces during mass production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted

Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...

متن کامل

Statistical Analysis and Optimization of Factors Affecting the Surface Roughness in UVaSPIF Process Using Response Surface Methodology

Ultrasonic vibration assisted single point incremental forming (UVaSPIF) is based on localized plastic deformation in a sheet metal blank. It consists to deform gradually and locally the sheet metal using vibrating hemispherical-head tool controlled by a CNC milling machine. The ultrasonic excitation of forming tool reduces the vertical component of forming force. In addition, application of ul...

متن کامل

Experimental Investigation of Surface Roughness and Kerf Width During Machining of Blanking Die Material on Wire Electric Discharge Machine

Wire electric discharge machine (WEDM) is spark erosion in unconventional machining technique to cut hard and the conductive material with a wire as an electrode. The blanking die material SKD 11 is a high carbon and high chromium tool steel with high hardness and high wearing resistance property. This tool steel has broad application in press tools and dies making industries. In this research ...

متن کامل

Experimental Investigation of surface roughness in dry turning of AISI 4340 alloy steel using PVD- and CVD- coated carbide inserts

The performance of coated inserts was described using Response Surface Methodology (RSM) when turning AISI 4340 alloy steel using single layer PVD and triple layer CVD coated inserts. Cutting tests were performed under dry cutting conditions so as to reduce the effects of cooling agents on the environment. Surface roughness (Ra) was the main response variable investigated. The experimental plan...

متن کامل

Prediction Model for CNC Turning on AISI316 with Single and Multilayered Cutting tool Using Box Behnken Design (RESEARCH NOTE)

Austenitic stainless steels (AISI316) are used for many commercial and industrial applications for their excellent corrosive resistance. AISI316 is generally difficult to machine material due to their high strength and high work hardening tendency. Tool wear (TW) and surface roughness (SR) are broadly considered the most challenging phases causing poor quality in machining. Optimization of cutt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013